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 Statistical Reversion Toward the Mean: More Universal

 Than Regression Toward the Mean

 MYRA L. SAMUELS*

 Schmittlein discussed the lack of universality of regres-

 sion toward the mean. The present note emphasizes the

 universality of a similar effect, dubbed "reversion" to-

 ward the mean, defined as the shift in conditional ex-

 pectation of the upper or lower portion of a distribution.

 Reversion toward the mean is a useful concept for sta-

 tistical reasoning in applications and is more self-evi-

 dently plausible than regression toward the mean.

 KEY WORDS: Probability mixture models; Regression

 to the mean; Reversion to the mean.

 1. INTRODUCTION

 In a recent commentary, Schmittlein (1989) demon-

 strated that the phenomenon of statistical regression to-

 ward the mean is by no means universal, even in mixture

 models where universality might have been hoped for.

 The purpose of the present note is to point out that a

 closely related phenomenon is much more nearly uni-

 versal and to present a heuristic proof of this universality

 that is easily accessible to nonstatisticians.

 2. REGRESSION AND REVERSION

 TOWARD THE MEAN

 Let X1 and X2 be random variables with joint distri-

 bution function F. Assume that X1 and X2 have the same

 marginal distribution and let ,u denote their common mean.

 The distribution F exhibits regression toward the mean

 if, for all c > ,u,

 ? ' E[X2 I X1 = c] < c, (1)
 with the reverse inequalities holding for c < ,u.

 As noted by Schmittlein (1989), Galton (1877) orig-
 inally used the term reversion rather than regression. Let

 us resurrect this archaic term for a new use, and say that
 F exhibits reversion toward the mean if, for any c,

 ,u'E[X2 X1 > c] < E[XI X1 > c] (2a)
 and

 ,u'E[X2 |XI < c] > E[XI XI < C]. (2b)

 (To avoid trivialities, we restrict attention throughout to

 values of c for which the conditional expectations are

 defined.) Clearly, regression toward the mean implies
 reversion toward the mean, but not vice versa.

 As defined by (2), reversion toward the mean occurs

 when the conditional mean of the upper or lower portion

 of the distribution shifts, or reverts, toward the uncon-

 ditional mean ,u. In many applications the upper or lower

 portion of interest would be a small portion (a tail) of

 the distribution, but reversion is not restricted to this case;

 note that (2) places no restriction on the location of c

 relative to ,u.

 Reversion can serve as well as regression to motivate

 statistical cautionary tales. For example, educational re-

 searchers can be warned that a group of school children

 selected because their performance is below some cutoff

 would be expected, on the average, to show improve-

 ment when observed later. Or medical investigators can

 be alerted that patients selected for levels of serum po-

 tassium higher than some cutoff would be expected, on

 the average, to show reduced levels when observed later.

 The phenomenon (2) has been discussed in this kind
 of context (for example, by Davis 1976, 1986;

 McDonald, Mazzuca, and McCabe 1983), but termi-
 nology is often vague and the distinction between (1) and

 (2) is frequently blurred. Recently Senn (1990) has em-

 phasized that (2) is a phenomenon of practical impor-

 tance and has suggested that both (1) and (2) should be
 considered forms of regression toward the mean. It might

 be less confusing, however, to give distinct names to
 these distinct phenomena. Since the conditional expec-

 tation function f(x) = E[X2 I XI = x] is generally called
 the "regression" function (Rao 1973, p. 264; Dixon and
 Massey 1983, p. 210-211; Kendall, Stuart, and Ord 1987,
 p. 524), it seems appropriate to continue to refer to (1)

 as "regression" and to choose a different name for (2).

 3. THE UNIVERSALITY OF REVERSION

 TOWARD THE MEAN

 To investigate the universality of reversion toward the

 mean, it is helpful to split the definition into two parts
 by noting that (2) holds iff

 E[X2 |XI > c] < E[XI XI > c], for all c, (3a)

 E[X2 |XI < c] > E[XI XI < c] , for all c, (3b)
 and

 E[X2 I X1 > c] 2 /, E[X2 I XI < c] < ?
 for all c. (4)

 The condition (3) can be called reversion to the mean
 or beyond; (3a) asserts that the mean of the upper por-
 tion of the distribution reverts to a lower position, and

 (3b) asserts contrariwise for the mean of the lower por-
 tion. The additional requirement (4) assures that the re-
 version cannot go beyond the mean ,u.

 *Myra L. Samuels is Instructor and Assistant Supervisor of Statis-

 tical Consulting, Department of Statistics, Purdue University, West

 Lafayette, IN 47907.

 344 The American Statistician, November 1991, Vol. 45, No. 4 ?) 1991 American Statistical Association

This content downloaded from 209.121.33.63 on Wed, 23 Oct 2019 05:08:42 UTC
All use subject to https://about.jstor.org/terms



 Reversion to the mean or beyond is virtually a uni-

 versal phenomenon. Only the nondegeneracy condition

 Pr[X2> c I X1 > c] < 1, Pr[X2< c I X1 < c] < 1,

 for all c (5)

 is required to assure that the inequalities in (3) are strict.

 Proposition. If X1 and X2 are identically distributed

 and (5) holds, then (3) holds; that is, F exhibits reversion

 to the mean or beyond.

 Here are two proofs of the proposition. The first is a

 straightforward mathematical proof. (A different math-

 ematical proof, assuming X1 and X2 nonnegative, was

 given by McDonald et al. 1983.)

 Mathematical Proof. Let Ii, for i = 1, 2, denote in-
 dicator random variables defined by

 Ii = I if Xi> c

 = 0 otherwise,

 and let J = I, - I2. Then

 E[X2I1] = E[X2I2] + E[X2J] = E[XIII] + E[X2J]. (6)

 (The second equality follows because X1 and X2 are iden-

 tically distributed.) The fact that X2 < c when J = 1 and

 X2 > c when J = -1, together with (5), implies that

 E[X2J] < c Pr[J = 1] - c Pr[J =-1]

 = c E[J]

 = 0,

 so that (6) yields

 E[X21,] < E[X1I1],

 from which (3a) follows immediately. Relation (3b) is

 proved similarly.

 The second proof of the Proposition is an easily under-
 stood heuristic argument, framed in terms of IQ, a var-

 iate that has the same distribution at any age.

 The Red T-Shirt Argument. Let X1 and X2 represent

 IQ at age 8 and at age 18, respectively. Visualize a very

 long row of chairs, each occupied by an 8-year-old child;

 each chair bears a label with the child's IQ, and the chairs

 are arrayed in nondecreasing order of IQ from left to
 right. Suppose a kindly teacher decides to reward the

 "smart" children whose IQ exceeds c; say, c = 120. She

 places a marker on the rightmost chair labeled 120, and

 all children sitting to the right of the marker receive red

 T-shirts. What happens to the mean IQ of the red T-

 shirted children as they grow from age 8 to 18? Imagine

 that the chairs and labels remain in place (representing

 the stationarity of the distribution) while the children get
 up, have various adventures (but retain their red T-shirts),

 and return at age 18 to take a chair corresponding to their

 current IQ. Possibly all red T-shirts are still sitting to the

 right of the marked chair; in this case [(5) being violated]

 the mean IQ of the red T-shirt group has not changed.

 But, if any red T-shirts have moved to the left of the

 marked chair, then clearly the mean IQ of the red T-

 shirt group must have decreased. This proves the first

 relation in (3); the second would be argued similarly.

 If, in addition to having identical marginals, the dis-

 tribution F satisfies the condition (4), then F exhibits

 reversion toward the mean (not beyond). Condition (4)

 asserts a weak form of positive dependence between X1

 and X2, weaker than positive quadrant dependence as de-

 fined by Lehmann (1966), but stronger than nonnegative

 correlation. Reversion toward the mean is universal, then,

 among distributions with X1 and X2 identically distrib-

 uted and weakly positively dependent in the sense of (4).
 In longitudinal studies, where X1 and X2 are measure-

 ments on the same subject, it would usually be reason-

 able to assume that (4) should hold. In such a setting,

 (4) simply asserts that the group of subjects whose initial

 scores are higher [lower] than c will score higher [lower]

 than average when measured subsequently; this will cer-
 tainly be true if the expected future score of an individ-

 ual is a monotonically increasing function of his initial

 score.

 As mathematical models for longitudinal studies,

 Schmittlein (1989) considered latent trait mixture models,
 in which X1 is an observation from a mixture distribution

 of the form f G(x I 0) dH(0) and X2 is another obser-
 vation for the same value of 0. It is easy to show that

 in these models (4) will hold if the distribution functions

 G(x I 0) are monotone in 0. Thus, for example, any dis-
 tribution generated by mixing Poissons will exhibit re-

 version toward the mean, even though, as in examples

 4.1 and 4.2 of Schmittlein (1989), it may not exhibit

 regression toward the mean. Similarly, any distribution

 generated by mixing normals (with equal variances) on

 their mean will exhibit reversion toward the mean, even

 though it may not exhibit regression toward the mean,

 and, indeed, it will generally (if it is unimodal) exhibit

 regression toward the mode, as shown by Das and Mulder

 (1983). As further examples, any distribution generated

 by mixing binomials (with equal n's) on their success

 probability, or by mixing gammas (with equal scale pa-

 rameters) on their shape parameter, or by mixing gam-

 mas (with equal shape parameters) on their scale param-

 eter, will exhibit reversion toward the mean.

 The preceding discussion has assumed X1 and X2 to be

 identically distributed. If they are not, the notions of

 regression and reversion toward the mean can be gen-

 eralized to mean that the standardized random variables

 Xi* = (Xi - i)/oi exhibit regression or reversion toward
 zero, where 4i and oi are the mean and standard devia-
 tion of Xi, for i = 1, 2. Clearly, reversion toward the
 mean in this generalized sense is universal whenever X1

 and X2 belong to the same location-scale family and are

 positively dependent in the sense that the Xi* satisfy (4)

 4. THE MAGNITUDE OF THE

 REVERSION EFFECT

 When both regression and reversion toward the mean

 occur, we can compare the magnitudes of the two ef-

 fects. The comparison is very simple in the case of linear
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 conditional expectations, that is, when E[X2 I X1] = a +
 ,8X1, which, because X1 and X2 are identically distrib-
 uted, can be expressed as

 E[X2 I X1] = (1 - p),ii + pXI, (7)
 where p is the correlation between X1 and X2. As noted
 by Schmittlein (1989), if (7) holds, then regression to-

 ward the mean always occurs. Assuming (7), the relative
 magnitude of the regression shift is

 c - E[X2X = c]
 = 1 -p,

 and the relative magnitude of the reversion shift is

 E[X1 I X1 > c] - E[X2 I X1 > c]
 E[X1 X1 > c] -

 E[X1 X1 > c] - {(1 - p)lu + pE[XI I X1 > c]}

 E[X1 I X1 > c] -

 = 1- p.

 Thus in the case of linear conditional expectations, the
 relative magnitudes of the reversion shift and the regres-
 sion shift are equal. [Incidentally, for the IQ example of

 Section 3, p is roughly .7, as reported by Anastasi (1988),

 p. 337].

 5. CONCLUSION

 Reversion toward the mean-the shift of the condi-

 tional expectation of the upper or lower portion of a dis-
 tribution-is a phenomenon that shares much of the in-

 tuitive content of the more familiar regression toward the
 mean. In contrast with regression toward the mean, re-
 version toward the mean occurs under very general con-

 ditions, requiring essentially only that the variates under

 discussion be identically distributed and (in a weak sense)

 positively dependent. Moreover, a vivid heuristic argu-

 ment is available that not only can convince nonstatis-

 ticians that the phenomenon occurs but also can convey

 an intuitive understanding of why its occurrence is

 inevitable.

 [Received September 1989. Revised July 1990.]
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